天涯小站 2.0

 找回密码
 注册
搜索
查看: 2710|回复: 5

192.多巴胺和记忆

[复制链接]
发表于 2023-4-4 14:31:23 | 显示全部楼层 |阅读模式
本帖最后由 Reader86 于 2023-4-13 03:49 PM 编辑

While memory encoding and consolidation processes have been linked with dopaminergic signaling for a long time, the role of dopamine in episodic memory retrieval remained mostly unexplored. Based on previous observations of striatal activity during memory retrieval, we used pharmacological functional magnetic resonance imaging to investigate the effects of dopamine on retrieval performance and metacognitive memory confidence in healthy humans. Dopaminergic modulation by the D2 antagonist haloperidol administered acutely during the retrieval phase improved recognition accuracy of previously learned pictures significantly and was associated with increased activity in the substantia nigra/ventral tegmental area, locus coeruleus, hippocampus, and amygdala during retrieval. In contrast, confidence for new decisions was impaired by unsystematically increased activity of the striatum across confidence levels and restricted range of responsiveness in fronto-striatal networks under haloperidol. These findings offer new insights into the mechanisms underlying memory retrieval and metacognition and provide a broader perspective on the presence of memory problems in dopamine-related diseases and the treatment of memory disorders.

虽然记忆编码和巩固过程长期以来一直与多巴胺能信号有关,但多巴胺在情景记忆检索中的作用仍未得到探索。 基于之前对记忆检索过程中纹状体活动的观察,我们使用药理学功能磁共振成像来研究多巴胺对健康人的检索性能和元认知记忆信心的影响。 D2 拮抗剂氟哌啶醇在检索阶段的多巴胺能调节显着提高了先前学习图片的识别准确性,并且与检索过程中黑质/腹侧被盖区、蓝斑、海马和杏仁核的活动增加有关。 相比之下,在氟哌啶醇下,纹状体在置信水平上的活动非系统地增加以及额纹状体网络的反应范围受限,从而削弱了对新决策的信心。  这些发现为记忆检索和元认知的潜在机制提供了新的见解,并为多巴胺相关疾病中记忆问题的存在和记忆障碍的治疗提供了更广阔的视角。

https://www.ncbi.nlm.nih.gov/pmc ... pamine%20has%20been,memories%20%5B2%2C%203%5D.
回复

使用道具 举报

 楼主| 发表于 2023-4-4 15:13:11 | 显示全部楼层
本帖最后由 Reader86 于 2023-4-4 04:14 PM 编辑

Los Angeles,May2,2018

Study Sheds Light on How "Dopamine Neurons" Contribute to Memory Formation in Humans

Research from Cedars-Sinai sheds light on how the human brain rapidly forms new memories, providing insights into potential new treatments for memory disorders.

A new study examined neurons that produce dopamine, a compound that acts as a transmitter for nerve impulses. It found that these dopamine neurons play a critical role in the formation of episodic memory, which allows people to remember such things as where they parked the car in the morning and what they had for dinner last night.

The study, published in the journal Current Biology, was co-authored by Ueli Rutishauser, PhD, the senior author and an associate professor in the Department of Neurosurgery at Cedars-Sinai. In the study, investigators observed the response of individual human dopamine neurons in patients undergoing deep brain stimulation surgery to treat Parkinson’s disease. The patients watched a sequence of images: Some had never been seen before and were thus "novel"; others were repeated and were therefore "familiar."

For each image, the patient pressed a button indicating whether it was novel or familiar. This allowed investigators to track the formation of new memories, because an image was only novel once. Afterward, it formed a memory.

"What we discovered was that a subset of the dopaminergic neurons responded only when an image was novel, but not when it was familiar. In other words, it indicated if the image was new, but not if something was familiar," said Jan Kaminski, PhD, first author of the study and a project scientist at Cedars-Sinai. "This is an important new scientific discovery, because it has so far remained unclear how the dopaminergic system contributes to episodic memory formation."

Cedars-Sinai 的研究揭示了人脑如何快速形成新记忆,为记忆障碍的潜在新疗法提供了见解。

一项新的研究检查了产生多巴胺的神经元,多巴胺是一种充当神经冲动递质的化合物。 研究发现,这些多巴胺神经元在情景记忆的形成中起着关键作用,情景记忆能让人们记住诸如早上把车停在哪里以及昨晚吃了什么等事情。

该研究发表在《当代生物学》杂志上,由 Ueli Rutishauser 博士合着,他是 Cedars-Sinai 神经外科的资深作者和副教授。 在这项研究中,研究人员观察了接受深部脑刺激手术治疗帕金森病的患者个体多巴胺神经元的反应。 病人观看一系列图像:有些以前从未见过,因此是“新奇的”; 其他人被重复,因此是“熟悉的”。

对于每张图片,患者都会按下一个按钮,表明它是新奇的还是熟悉的。 这使得研究人员能够追踪新记忆的形成,因为一幅图像只有一次是新颖的。 之后,就形成了记忆。

“我们发现,多巴胺能神经元的一个子集仅在图片新颖时才会做出反应,而在图片熟悉时则不会。换句话说,它表明图片是否是新的,而不是是否熟悉,”Jan Kaminski 说。 ,博士,该研究的第一作者和 Cedars-Sinai 的项目科学家。 “这是一项重要的新科学发现,因为迄今为止仍不清楚多巴胺能系统如何促进情景记忆的形成。”

https://www.cedars-sinai.org/new ... ormation-in-humans/
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-4 16:53:03 | 显示全部楼层
How we recall the past
Neuroscientists discover a brain circuit dedicated to retrieving memories.
Anne Trafton | MIT News Office
Publication Date:August 17, 2017

When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, such as the location where the event occurred or the emotions associated with it.

Neuroscientists who study memory have long believed that when we recall these memories, our brains turn on the same hippocampal circuit that was activated when the memory was originally formed. However, MIT neuroscientists have now shown, for the first time, that recalling a memory requires a “detour” circuit that branches off from the original memory circuit.

“This study addresses one of the most fundamental questions in brain research — namely how episodic memories are formed and retrieved — and provides evidence for an unexpected answer: differential circuits for retrieval and formation,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, the director of the RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, and the study’s senior author.

This distinct recall circuit has never been seen before in a vertebrate animal, although a study published last year found a similar recall circuit in the worm Caenorhabditis elegans.

Dheeraj Roy, a recent MIT PhD recipient, and research scientist Takashi Kitamura are the lead authors of the paper, which appears in the Aug. 17 online edition of Cell. Other MIT authors are postdocs Teruhiro Okuyama and Sachie Ogawa, and graduate student Chen Sun. Yuichi Obata and Atsushi Yoshiki of the RIKEN Brain Science Institute are also authors of the paper.

Parts unknown

The hippocampus is divided into several regions with different memory-related functions — most of which have been well-explored, but a small area called the subiculum has been little-studied. Tonegawa’s lab set out to investigate this region using mice that were genetically engineered so that their subiculum neurons could be turned on or off using light.

The researchers used this approach to control memory cells during a fear-conditioning event — that is, a mild electric shock delivered when the mouse is in a particular chamber.

Previous research has shown that encoding these memories involves cells in a part of the hippocampus called CA1, which then relays information to another brain structure called the entorhinal cortex. In each location, small subsets of neurons are activated, forming memory traces known as engrams.

“It’s been thought that the circuits which are involved in forming engrams are the same as the circuits involved in the re-activation of these cells that occurs during the recall process,” Tonegawa says.

However, scientists had previously identified anatomical connections that detour from CA1 through the subiculum, which then connects to the entorhinal cortex. The function of this circuit, and of the subiculum in general, was unknown.

In one group of mice, the MIT team inhibited neurons of the subiculum as the mice underwent fear conditioning, which had no effect on their ability to later recall the experience. However, in another group, they inhibited subiculum neurons after fear conditioning had occurred, when the mice were placed back in the original chamber. These mice did not show the usual fear response, demonstrating that their ability to recall the memory was impaired.

This provides evidence that the detour circuit involving the subiculum is necessary for memory recall but not for memory formation. Other experiments revealed that the direct circuit from CA1 to the entorhinal cortex is not necessary for memory recall, but is required for memory formation.

“Initially, we did not expect the outcome would come out this way,” Tonegawa says. “We just planned to explore what the function of the subiculum could be.”

“This paper is a tour de force of advanced neuroscience techniques, with an intriguing core result showing the existence and importance of different pathways for formation and retrieval of hippocampus-dependent memories,” says Karl Deisseroth, a professor of bioengineering and psychiatry and behavioral sciences at Stanford University, who was not involved in the study.

Editing memories

Why would the hippocampus need two distinct circuits for memory formation and recall? The researchers found evidence for two possible explanations. One is that interactions of the two circuits make it easier to edit or update memories. As the recall circuit is activated, simultaneous activation of the memory formation circuit allows new information to be added.

“We think that having these circuits in parallel helps the animal first recall the memory, and when needed, encode new information,” Roy says. “It’s very common when you remember a previous experience, if there’s something new to add, to incorporate the new information into the existing memory.”

Another possible function of the detour circuit is to help stimulate longer-term stress responses. The researchers found that the subiculum connects to a pair of structures in the hypothalamus known as the mammillary bodies, which stimulates the release of stress hormones called corticosteroids. That takes place at least an hour after the fearful memory is recalled.

While the researchers identified the two-circuit system in experiments involving memories with an emotional component (both positive and negative), the system is likely involved in any kind of episodic memory, the researchers say.

The findings also suggest an intriguing possibility related to Alzheimer’s disease, according to the researchers. Last year, Roy and others in Tonegawa’s lab found that mice with a version of early-stage Alzheimer’s disease have trouble recalling memories but are still able to form new memories. The new study suggests that this subiculum circuit may be affected in Alzheimer’s disease, although the researchers have not studied this.

The research was funded by the RIKEN Brain Science Institute, the Howard Hughes Medical Institute, and the JPB Foundation.

https://news.mit.edu/2017/neuros ... 0has%20shown%20that,memory%20traces%20known%20as%20engrams.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-4 18:48:04 | 显示全部楼层
当我们有了新的体验时,对该事件的记忆会存储在连接海马体和其他大脑结构的多个部分的神经回路中。 每个神经元簇都可以存储记忆的不同方面,例如事件发生的位置或与之相关的情绪。

研究记忆的神经科学家一直认为,当我们回忆起这些记忆时,我们的大脑会开启与最初形成记忆时激活的海马体回路相同的回路。 然而,麻省理工学院的神经科学家现在首次表明,回忆记忆需要从原始记忆回路中分支出来的“迂回”回路。

“这项研究解决了大脑研究中最基本的问题之一——即情景记忆是如何形成和恢复的——并为一个意想不到的答案提供了证据:恢复和形成的微分电路,”Picower 生物学和神经科学教授 Susumu Tonegawa 说。 ,皮考尔学习与记忆研究所 RIKEN-MIT 神经回路遗传学中心主任,也是该研究的资深作者。

这种独特的回忆回路以前从未在脊椎动物身上发现过,尽管去年发表的一项研究在秀丽隐杆线虫中发现了类似的回忆回路。

最近获得麻省理工学院博士学位的 Dheeraj Roy 和研究科学家 Takashi Kitamura 是该论文的主要作者,该论文发表在 8 月 17 日的 Cell 网络版上。 麻省理工学院的其他作者是博士后 Teruhiro Okuyama 和 Sachie Ogawa,以及研究生 Chen Sun。 日本理化学研究所脑科学研究所的 Yuichi Obata 和 Atsushi Yoshiki 也是该论文的作者。

零件未知

海马体分为几个具有不同记忆相关功能的区域——其中大部分已被充分探索,但一个叫做下托的小区域却鲜为人知。 Tonegawa 的实验室着手使用经过基因工程改造的小鼠来研究这个区域,这样它们的下托神经元就可以用光打开或关闭。

研究人员使用这种方法在恐惧条件反射事件中控制记忆细胞——也就是说,当老鼠在特定的房间里时,会发出轻微的电击。

先前的研究表明,对这些记忆进行编码涉及海马体中称为 CA1 的细胞,然后将信息传递到另一个称为内嗅皮质的大脑结构。 在每个位置,一小部分神经元被激活,形成称为印痕的记忆痕迹。

Tonegawa 说:“人们认为,参与形成记忆痕迹的回路与参与在回忆过程中重新激活这些细胞的回路相同。”

然而,科学家们之前已经确定了从 CA1 绕过下托的解剖连接,然后下托连接到内嗅皮层。 这个回路和一般下托的功能是未知的。

在一组小鼠中,麻省理工学院团队抑制了下托的神经元,因为小鼠经历了恐惧条件反射,这对它们以后回忆经历的能力没有影响。 然而,在另一组中,当小鼠被放回原来的房间时,它们会在恐惧条件反射发生后抑制下托神经元。 这些老鼠没有表现出通常的恐惧反应,表明它们回忆记忆的能力受损。

这提供了证据表明,涉及下托的迂回回路对于记忆回忆是必需的,但对于记忆形成不是必需的。 其他实验表明,从 CA1 到内嗅皮层的直接回路对于记忆回忆不是必需的,但对于记忆形成是必需的。

“最初,我们没想到结果会这样,”利根川说。 “我们只是计划探索下托的功能。”

“这篇论文是先进神经科学技术的杰作,其核心结果引人入胜,显示了海马体相关记忆的形成和检索的不同途径的存在和重要性,”生物工程、精神病学和行为科学教授 Karl Deisseroth 说。 在斯坦福大学,他没有参与这项研究。

编辑记忆

为什么海马体需要两个不同的回路来形成记忆和回忆? 研究人员发现了两种可能解释的证据。 一是两个电路的相互作用使得编辑或更新记忆变得更加容易。 当召回电路被激活时,记忆形成电路的同时激活允许添加新信息。

“我们认为并联这些电路有助于动物首先回忆起记忆,并在需要时编码新信息,”罗伊说。 “这是很常见的,当你想起以前的经历时,如果有新的东西要添加,就把新的信息合并到现有的记忆中。”

迂回电路的另一个可能功能是帮助刺激长期压力反应。 研究人员发现,下托与下丘脑中称为乳头体的一对结构相连,这会刺激称为皮质类固醇的应激激素的释放。 这发生在回忆起可怕的记忆后至少一个小时。

研究人员说,虽然研究人员在涉及具有情绪成分(积极和消极)的记忆的实验中发现了双回路系统,但该系统可能涉及任何类型的情景记忆。

据研究人员称,这些发现还表明了一种与阿尔茨海默病有关的有趣可能性。 去年,罗伊和利根川实验室的其他人发现,患有早期阿尔茨海默氏病的小鼠在回忆记忆方面存在困难,但仍能够形成新的记忆。 这项新研究表明,这种下托环路可能会在阿尔茨海默病中受到影响,尽管研究人员尚未对此进行研究。

该研究由 RIKEN 脑科学研究所、霍华德休斯医学研究所和 JPB 基金会资助。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-13 13:15:47 | 显示全部楼层
本帖最后由 Reader86 于 2023-4-13 02:23 PM 编辑

个人的记忆的特征

人的记忆是个很不靠谱的事。有个著名的心理学实验,让一群被试者在屋子里开会,其间突然一群人冲进屋,打了一场枪战。之后警察进来,让每个人分别描述所见。但实际上这只是个实验,那群人都是演员,发生的枪战是按一个剧本精确的表演。这样目击者的描述就可以和实际事件有个精确的对比。这个实验发现目击者的描述与实际发生的事差别很大,而且警方从多个目击者的叙述中做出的结论(即所谓证据链)也可以和事实差别很大,而且时间越久,差别越大,目击者之间的交流越多,和事实的差距也越大。
  为什么会有这样的事呢?现代神经科学发现,人的所谓长期记忆并不是像计算机硬盘那样被一次写成,永远不改的。实际上记住的东西是不断地被回忆出来,加深印象后再存回去。这样每次存取就会有一定的改变,尤其是几个当事人谈论的时候更会互相影响,出现以讹传讹的现象。
  最近我自己也亲身经历了一个生动的例子。我在回忆我住在上海亲戚家的时候,写了一件印象及其深刻的事:
"早上很早就被弄堂里倒马桶,刷马桶的声音吵醒,那刷马桶的工具由一大把细竹片绑成, 看着像一把两尺长的大号炊帚.刷起来是清脆而有节奏的啪啪声.在晨曦中格外响亮. 待我起床下楼,马桶们早已刷的干干净净,排成一排在弄堂里晒太阳. 细看每个马桶都做工讲究,上面被上海人的细皮嫩肉磨得锃亮,好像一件件精致的红木古董."

 可是我的上海亲戚和熟悉上海的人都指出,实际上我住的那个地方一直是有抽水马桶的,早上倒马桶的事情并不存在。可是对于我来说,几乎一闭眼就能听到那收粪车人的吆喝和木板敲击的声音,听到刷马桶清脆而有节奏的声音以及看到那些刷干净的马桶。我的亲戚说这些细节都是对的,但那应该是发生在上海其他没有下水的弄堂里。可我觉得我只在上海一个住过很短的时间,记忆不会错的。
  现代医学可以利用人类记忆的这个特点治疗一些顽症,如创伤后心理症候群(Post-traumatic stress disorder, PTSD). 这种病人在战争中经历了极端恐怖的事件,比如看着身边战友被子弹打中,鲜血喷涌而死。这个经历一般印象极深且不断地被回忆而加深印象。对病人最有害的是回忆此事件时的生理反应,如心跳加速,血压升高,肾上腺素分泌等。随着印象不断加深生理反应也会不断增强,最后一点声响比如旁边人拍一下手就会引起极端的生理反应如血压爆棚,心肌梗死等。这个病以前几乎没治,而患者也时刻生活在恐惧之中,不知道什么时候会突然被吓死。
  与恐怖经验相联系的极端生理反应实际上也是记忆的一部分,但这部分是联系到大脑底部的一个叫杏仁核 (amygdala)的结构,由后者联通下丘脑(hypothalamus)并激发身体的紧急反应系统。
杏仁核

  在治疗PTSD的时候,医生让患者在半麻醉状态下引发恐怖经历,比如看激烈战争电影。麻醉能有效地阻断脑中的长程联系,这样虽然恐怖经验可以被唤起,但却不能兴奋杏仁核,造成极端生理反应。如此每次治疗把恐怖经验唤起在重新写回去,但记忆的一部分,即极端生理反应却没有被唤起也没有被写回去。这样二者就逐渐脱节,PTSD 的症状就逐渐消失了。
  把人类记忆的一部分除去也是政治家常用的洗脑手段,如用反复宣传的办法使人们接受某种观念而失去对他们罪恶的记忆,也即谎言重复千遍变成了真理。

https://smallstation.net/home.ph ... o=blog&id=22371
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-13 13:51:33 | 显示全部楼层
https://smallstation.net/home.ph ... o=blog&id=20651

人有明确记忆, 那么有没有 “不明确” 记忆啊? 有啊!这也是米尔娜研究患者HM的惊人发现. 不明确记忆 (implicit memory), 就是不知不觉学会的事,比如骑车,滑冰,舞蹈,体操中的动作组合等等.

解剖人类的记忆

不久前(2014年2月,Nature communications)发表的一篇文章的结果似乎很出乎人的意外: 多年以来公认他的双侧海马回缺失是造成他明确记忆损伤的主要原因, 但篇文章发现他的一大部分海马回居然是完好的. 可是这个结果并没有推翻几十年研究的定论。他的海马回虽然部分完好,但是这部分海马与大脑新皮层的联线却严重地损伤了。这样信息进不去海马也出不来,阻碍了在大脑皮层中形成明确记忆的过程。

对HM 的研究让我们深刻立解到海马回作为形成明确记忆的门户作用。奥滋海默患者的主要病灶之一是海马损坏,结果就是逐渐忘记一切。今年有几篇有新闻效应的文章说可以在老鼠的海马回里装上电极,用电刺激的方法唤醒老鼠已经遗忘的记忆,甚至添上从未经历过的新记忆。也许在不久的将来我们能给奥滋海默患者装上“大脑起搏器”,一按电钮就立刻想起我是谁,认出亲人,认出自己家的环境。


大脑的复杂性在现今世界上只有互联网与之相比。但互联网是人类理性构造的,而大脑却是进化出来的,包含了太多进化造成的秘密,和像喉返神经那样的“不得不”。对患者HM的研究只是揭露了神经线路的冰山一角,而大脑仍然像一个神秘的金矿,等待着人类去开采。

https://smallstation.net/home.ph ... o=blog&id=20726


回复 支持 反对

使用道具 举报

手机版|天涯小站

GMT-5, 2025-12-2 01:07 AM

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表